
Calculation of the charge density on a grounded and ungrounded
conducting sphere near a point charge +q .

Description:

This calculation shows examples of calculating charge densities on spherical objects
in an external electric field provided by a point charge. Whilst grounded objects are
commonly solved in examples, ungrounded objects can also be handled as the net charge
neutrality takes the place of a boundary condition and allows the problem to be solved.

Intended Audience, Prerequisites:
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1) Charge density on a grounded conducting sphere near a point charge +q.

To solve this, we need the first of Maxwell’s equations, that is Gauss’s law for electrostatics,
which when written in terms of the potential function φ (ie: E⃗(r̄) = −∇φ) gives Poisson’s
equation. As we will be dealing with the field outside of the point charge and conductors,
we can take ρ(r̄) = 0 and then simply solve Laplace’s equation.

∇ ◦ E⃗(r̄) =
ρ(r̄)

ϵ0
(Gauss’s Law)

∇2φ(r̄) =
−ρ(r̄)

ϵ0
(Poisson’s Eqn.)

∇2φ(r̄) = 0 (Laplace’s Eqn.)

As our starting point, if the charge distribution is azimuthally symmetric the solution to
Laplace’s equation is an expansion of the Legendre polynomials, we will not be deriving
this here, but starting from this point.

φ(r, θ) =

∞∑
l=0

(alr
l +

bl
rl+1

)Pl(cos θ) (1)

where al, bl are to be determined from the boundary conditions and the physical
requirement that φ is finite throughout space (or square integrable). As an example, for
a radius outside of the sphere r > R we need only consider the bl as al must vanish for
the potential φ to be square integrable (ie: tend to zero as r tends to ∞).

The usual course of action in solving these problems to is to expand the field sup-
plied by the point charge +q (or any other charge distribution for that matter) along the
(positive) axis of symmetry, and then cast it into a form similar to that of the Legendre
expansion shown above for φ(r, θ).

So for a charge +q placed at a distance d on the z-axis we can expand the potential with
the help of the binomial theorem noting r/d < 1,

φ(+q)(R ≤ r < d, z axis) = ke
q

(d− r)
= ke

q/d

(1− r/d)
= ke

q

d
(1 + (

r

d
) + (

r

d
)2 + ...)

= keq
∑
l

rl

dl+1

which can now be recognised in a form similar to (1), with keq/d
l+1 taking on the role

of the al coefficients present in the Legendre expansion. As the potential of the point
charge has aximuthal symmetry about the z-axis (the axis along we just performed the
expansion) we can now simply multiply this by the Pl(cos θ) to get the general form for
angle’s lying off the z-axis.

φ(+q)(R ≤ r < d, θ) = keq
∑
l

rl

dl+1
Pl(cos θ)

We now make the claim that the charge distribution present on the grounded sphere will
also be azimuthally symmetric, for instance if you were to rotate the sphere or charge
by any angle around the z-axis the problem would appear identical, and therefore there
could not be any variation azimuthally in the charge distribution that is induced on the
grounded sphere. So that for the grounded sphere, with consideration of (1), we will have
a contribution of;

φsphere(R ≤ r, θ) =
∑
l

bl
rl+1

Pl(cos θ)

Where the bl are what we need to find to solve this problem. By the principle of super-
position for electric fields, the total electric field in the region (R < r < d, θ) will be the
sum of φ+q and φsphere.

φ(R ≤ r < d, θ) =

∞∑
l=0

(keq
rl

dl+1
+

bl
rl+1

)Pl(cos θ) (2)
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In electrostatics the electric field inside a conductor is always identically zero,

E⃗(r < R, θ) = 0

The sphere is grounded so we can apply this as a boundary condition,

φ(R, θ) = 0

0 =

∞∑
l=0

(keq
Rl

dl+1
+

bl
Rl+1

)Pl(cos θ)

which can only be true if each individual coefficient of Pl vanishes.

0 = keq
Rl

dl+1
+

bl
Rl+1

bl = −keq
R2l+1

dl+1

So we have as our complete solution on the interval (R ≤ r < d), inserting into (2) (and
neglecting to write our interval for r from hence forth),

φ(r, θ) = keq

∞∑
l=0

(
rl

dl+1
− R2l+1

dl+1rl+1
)Pl(cos θ) (3)

To now find the surface charge density we need to apply Gauss’s law in integral form
z
E⃗(r̄) ◦ dĀ =

qenc.
ϵ0

(Gauss’s Law)

We form a Gaussian region, with a surface as close to the (outer) surface of the sphere as
infinitesimal calculus will allow, and with the other sides extending in the interior of the
sphere. The surfaces on the interior of the sphere will not contribute to the integral, as
E(r < R, θ) is identically equal to zero on the inside of the sphere (whether the sphere is
hollow or solid makes no difference). The only surface of consequence in the integral is
the one at (or infinitesimally close to) the spherical surface.

The ∇ operator in spherical polar is given by,

∇ =
∂

∂r
r̂ +

1

r sin θ

∂

∂ϕ
ϕ̂+

1

r

∂

∂θ
θ̂

We need only concern ourselves with the radial component, as our Gaussian surface just
outside of the sphere has a radial orientation. All other components of the electric field
vanish in any case when r = R.

E⃗r = − ∂

∂r
φ(r, θ)

= −keq

∞∑
l=0

(
lrl−1

dl+1
+

(l + 1)R2l+1

dl+1rl+2
)Pl(cos θ)

Applying Gauss’s Law in integral form over the one contributing surface,

dA
σ(R, θ)

ϵ0
= −keq

∞∑
l=0

(
lrl−1

dl+1
+

(l + 1)R2l+1

dl+1rl+2
)Pl(cos θ)|r=Rr̂ ◦ dAr̂

σ(R, θ)

ϵ0
= −keq

∞∑
l=0

(2l + 1)
Rl−1

dl+1
Pl(cos θ)

σ(R, θ) = − q

4π

∞∑
l=0

(2l + 1)
Rl−1

dl+1
Pl(cos θ)

As one might expect the charge distribution on the sphere is negative, the positive charge
+q has induced some negative charge to be stored on the sphere, this negative charge is
freely available from the ground connection. There is a net negative charge on the sphere.
The precise charge density can be evaluated at the poles owing to the fact that Pl(cos 0) =
Pl(1) ≡ 1 and Pl(−1) = (−1)lPl(1). These properties of the Legendre polynomials will
not be developed here but are taken for granted. The infinite sum that is then remaining
can be cast into a hypergeometric form and from which a computer algebra system will
be necessary to find it’s closed form. This is left as an exercise for the reader.
For example the north pole yields:

σ(R, θ = 0)

ϵ0
= −keq

Rd

(1 +R/d)

(1−R/d)2

In addition the total charge on the sphere can be found by integrating the charge density
and using another property of the Legendre polynomials,

´ 1
−1

Pl(x) dx = 0, ∀ l ̸= 0

2) Charge density on an ungrounded conducting sphere near a point charge
+q.

In this case, the problem progresses much like the preceding example. The main difference
is we don’t have a boundary condition to directly apply to the sphere, however we can
indirectly get around this problem. The sphere will be at a constant potential, as all
conductor’s are, and therefore we can solve for a dummy potential V0 under the condition
that the integral of the surface charge density vanishes (ie: the sphere is charge neutral).
You probably have an instinct the answer should be either the potential of the center
of the sphere or perhaps the average of the potential of a spherical surface in the radial
field. They are slightly different and it would be hard to guess definitively.

Reproducing our original solution (2) we have on the interval (R < r < d),

φ(r, θ) =

∞∑
l=0

(keq
rl

dl+1
+

bl
rl+1

)Pl(cos θ)
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Suppose that φ(R, θ) = V0, we don’t know yet what V0 is, unlike in the preceding example
when this was equal to zero (ie: grounded means zero potential).

φ(R, θ) =

∞∑
l=0

(keq
Rl

dl+1
+

bl
Rl+1

)Pl(cos θ) = V0 (4)

We state without proof the orthogonality condition for Legendre polynomials for x = cos θ
(note: these properties are not being developed here but merely applied to the problem).
As θ ranges from 0 to π, x ranges from 1 to −1. The Jacobian for spherical integration
mops up the negative sign so the limits can be reversed, ie: d(cos θ) = − sin θ dθ.

1ˆ

−1

Pl(x)Pm(x) =
2

2l + 1
δlm

Now we can act on (4) with Pm(x) and integrate from −1 to 1 term by term, and make
use of

´ 1
−1

Pl(x) dx = 0, ∀ l ̸= 0 for the left hand side.

1ˆ

−1

Pm(x) · V0 dx =

1ˆ

−1

∞∑
l=0

(keq
Rl

dl+1
+

bl
Rl+1

)Pm(x) · Pl(x)dx

V0

(
2

2m+ 1

)
δm=0 =

∞∑
l=0

(keq
Rl

dl+1
+

bl
Rl+1

)

(
2

2l + 1

)
δl,m=0

The LHS is generally zero except for when m = 0 as shown above, in this case we find

b0 = R

(
V0 −

keq

d

)
For all other m ̸= 0 we have

bm = −keq
R2m+1

dm+1

Inserting these into (2) we obtain a full solution for the potential on the interval (R < r <
d)

φ(r, θ) =

∞∑
l=0

(keq
rl

dl+1
)Pl(cos θ) +

R

r

(
V0 −

keq

d

)
+

∞∑
l=1

(−keq
R2l+1

rl+1dl+1
)Pl(cos θ)

And proceeding as before to find the radial derivative, and also explicitly taking care of
summation indices on the first summation to allow a regrouping later on

E⃗r = − ∂

∂r
φ(r, θ)

= −

{ ∞∑
l=1

keq(
lrl−1

dl+1
)Pl(cos θ)−

R

r2

(
V0 −

keq

d

)
+

∞∑
l=1

(keq
(l + 1)R2l+1

rl+2dl+1
)Pl(cos θ)

}

Let r → R so the radial electric field just outside the sphere is

E⃗r

∣∣∣
r=R

= −

{ ∞∑
l=1

keq(
lRl−1

dl+1
+

(l + 1)R2l+1

Rl+2dl+1
)Pl(cos θ)−

R

R2

(
V0 −

keq

d

)}

= −

{ ∞∑
l=1

keq(
Rl−1

dl+1
(2l + 1)Pl(cos θ)−

V0

R
+

keq

Rd

}

= −

{ ∞∑
l=0

keq(
Rl−1

dl+1
(2l + 1)Pl(cos θ)−

V0

R

}

Now we can employ Gauss’s Law in integral form once again on the single surface con-
tributing to the integral,

dA
σ(R, θ)

ϵ0
= −

{ ∞∑
l=0

keq(
Rl−1

dl+1
(2l + 1)Pl(cos θ)−

V0

R

}
r̂ ◦ dAr̂

σ(R, θ)

ϵ0
= −

{ ∞∑
l=0

keq(
Rl−1

dl+1
(2l + 1)Pl(cos θ)−

V0

R

}

Given an expression for the charge density we are going to integrate over the entire spher-
ical surface and set it equal to zero, as our ungrounded sphere must be charge neutral as
there was no grounding wire available to have deposited charge on it. Our Jacobian for
this surface integral is simply 2πR2

´ 1
−1

...dx, recall that we converted from θ to x with
x = cos θ.

ˆ 1

−1

σ(R, x)

ϵ0
dx =

ˆ 1

−1

{
−

∞∑
l=0

keq(
Rl−1

dl+1
(2l + 1)Pl(cos θ) +

V0

R

}
dx

0 =

ˆ 1

−1

{
−

∞∑
l=0

keq(
Rl−1

dl+1
(2l + 1)Pl(cos θ)

}
dx+

2V0

R

Again making use of
´ 1
−1

Pl(x) dx = 0, ∀ l ̸= 0 we can pick out P0(x) only, where P0(x) ≡ 1

0 = −
∞∑
l=0

keq(
Rl−1

dl+1
(2l + 1) · (2δl=0) +

2V0

R

0 =
2V0

R
− 2keq

Rd

V0 =
keq

d

Which concludes the problem, we find the potential of an ungrounded sphere in an external
radial field is merely the potential of the position of the center of the sphere.
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