
Calculation with Ampere’s Law in integral form.

Description:

This calculation shows a simple application of Ampere’s Law in integral form around
a current carrying wire, one of the few example’s that can directly be solved by hand.
The integral is kept in symbolic form right until the end to help gain an apprecation of
how these line integral’s magically equal zero whenever the amperian loop is brought
just outside of the current carrying elements.

Intended Audience, Prerequisites:

Level 200 University.
Vector Calculus and a first course in Electromagnetism.

Keywords:

Ampere’s Law, Biot-Savart Law, Vector Calculus, Line integral, Hypergeometric func-
tion.

1) Magnetic field outside an infinitely long current carrying wire.

Beginning with the Biot-Savart law which gives the magnetic field at a position r̄ from
the current element dl̄ for a uniform current

dB⃗ =
(µ0

4π

) Idl̄ ⋊ r̄

r3
(Biot-Savart Law)

Or in vector integral form (making the replacement of r̄ with s̄ instead, so that s̄ denotes
the source vector of the directed current elements from the Biot-Savart Law)

B⃗(r̄) =

(
µ0I

4π

)ˆ
l

ds̄⋊ (r̄ − s̄)

|r̄ − s̄|3

The parameterization of the wire will be along the x-axis so we can write s̄ = xsi, such
that ds̄ = dxsi with limits of ±∞, and r̄ = xi+ yj+ zk

B⃗(r̄) =

(
µ0I

4π

) ∞̂

−∞

dxsi⋊ ((x− xs)i+ yj+ zk)

((x− xs)2 + y2 + z2)3/2

where the cross product is found via:

dxsi⋊ ((x− xs)i+ yj+ zk) =

∣∣∣∣∣∣
i j k

dxs 0 0
x− xs y z

∣∣∣∣∣∣ = 0i− z.dxsj+ y.dxsk

B⃗(r̄) =

(
µ0I

4π

) ∞̂

−∞

−z.dxsj+ y.dxsk

((x− xs)2 + y2 + z2)3/2

Make the substitution
√
y2 + z2 tan θ = x − xs, so −

√
y2 + z2 sec2 θ = dxs, limits are

then respectively −π/2, π/2

B⃗(r̄) =

(
µ0I

4π

) −π/2ˆ

π/2

√
y2 + z2(+z. sec2 θ dθ j− y. sec2 θ dθ k)

(y2 + z2)3/2(tan2 θ + 1)3/2

=

(
µ0I

4π

)
1

(y2 + z2)

−π/2ˆ

π/2

sec2 θ

sec3 θ
(zj− yk)dθ

=

(
µ0I

4π

)
1

(y2 + z2)

−π/2ˆ

π/2

cos θ(zj− yk)dθ

=

(
µ0I

4π

)
1

(y2 + z2)
(−2zj+ 2yk)

=

(
µ0I

2π

)
−zj+ yk

(y2 + z2)

2) Calculation of a circular Amperian loop around an infinitely long current
carrying wire.

As previously determined the magnetic field outside an infinitely long current carrying
wire lying along the x-axis is given by:

B⃗(r̄) =

(
µ0I

2π

)
−zj+ yk

(y2 + z2)

An amperian loop in the yz plane can be represented as

r2 = (y − y0)
2 + z2

which is a circle of radius r centered at (0, y0, 0).Without loss of generality, we can
restrict to y0 ≥ 0 and if for instance the circle’s origin was lying off the z = 0 plane then
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the coordinate system can always be re-oriented via a rotation to bring to the form of
coordinates shown. This is possible because of cylindrical/solenoidal symmetry in the
vector field B⃗. The x co-ordinate is non consequential as we can always slide the axis
along the abstracted infinitely long wire without any material effect in the magnetic field.

Ampere’s Circuital Law (in modern days just referred to as Ampere’s Law) is

ffi
C

B⃗ ◦ dr̄ = µ0Ienc (Ampere’s Law)

We are going to directly calculate the line integral in this worked example. The param-
eterization of C is given by C : r̄ = (r cos θ + y0)j + r sin θk for 0 ≤ θ ≤ 2π, therefore
dr̄ = (−r sin θj + rcosk) dθ. Before proceeding I will note this is one of the very few
problems in magnetism in which an exact solution is possible to arrive at by hand, it’s not
great that we had to approximate the wire as infinitely long in the first place, but that
aside the following is very elegant in that it finally works out.

ffi
C

B⃗ ◦ dr̄ =

ffi (
µ0I

2π

)
−zj+ yk

(y2 + z2)
◦ dr̄

=

(
µ0I

2π

)ˆ 2π

0

(−r sin θj+ (r cos θ + y0)k) ◦ (−r sin θj+ rcosk)

r2 sin2 θ + (r cos θ + y0)2
dθ

=

(
µ0I

2π

)ˆ 2π

0

(
r2 + y0r cos θ

r2 + y20 + 2y0r cos θ

)
dθ

Wolfram Alpha will return a symbolic solution of

1

2

(
θ − 2 arctan

(
(r + y0) cot(

θ
2 )

r − y0

))
which is difficult to make use of at the limits, of course it can be man-handled into any
integral multiple of π depending on what branch of the tan function is used. Instead of
settling for this solution we will solve the integral exactly with a hypergeometric function
as follows;

ffi
C

B⃗ ◦ dr̄ =

(
µ0I

2π

)ˆ 2π

0

(
r2 + y0r cos θ

r2 + y20 + 2y0r cos θ

)
dθ

=

(
µ0I

2π

)
1

2

ˆ 2π

0

(
2r2 + 2y0r cos θ

r2 + y20 + 2y0r cos θ

)
dθ

=

(
µ0I

2π

)
1

2
·
ˆ 2π

0

(
r2 + (r2 + y20 + 2y0r cos θ)− y20

r2 + y20 + 2y0r cos θ

)
dθ

=

(
µ0I

2π

)
1

2
·
ˆ 2π

0

(
1 +

r2 − y20
r2 + y20 + 2y0r cos θ

)
dθ

=

(
µ0I

2π

){
π +

1

2

(
r2 − y20
r2 + y20

)ˆ 2π

0

(
1

1 + 2y0r
r2+y2

0
cos θ

)
dθ

}

Halfway there, we need another π to make it’s way out of this. Let k = 2y0r
r2+y2

0
, you can

convince yourself that k is always less than 1 for any two positive numbers, and is exactly
when 1 when r = y0. In the case of r = y0, the wire is exactly on the boundary chosen
and the integral has convergence issues. This should not be of too much concern to ignore
for in the first instance a real wire has some breadth and therefore a current density. It is
worth stating that the idea of current and current density are an approximation of reality
in any case, where in fact there are real discrete charge carriers (electrons) that occupy
some volume in space due to their wave-function, so in classical electromagnetism current
is treated as the infinitesimal representation of all these many charge carriers. Ignoring
an infinitely thin boundary here then is no need for concern.

Focusing on the integral itself (which incidentally is common in physics and fairly
difficult with elementary methods) we note the following peculiar results, the first two
obvious from cosine having a periodicity over 2π. The last can be demonstrated via
partial fractional decomposition.

ˆ 2π

0

(
1

1 + k cos θ

)
dθ =

ˆ 2π

0

(
1

1− k cos θ

)
dθ =

ˆ 2π

0

(
1

1− k2 cos2 θ

)
dθ

We note that the middle form above can be expanded with the binomial theorem, and
then we can make use of the limits to greatly simplify the problem.

ˆ 2π

0

(
1

1− k cos θ

)
dθ =

ˆ 2π

0

(1 + k cos θ + k2 cos2 θ + k3 cos3 θ + k4 cos4 θ + ...)dθ

All the terms with odd powers of cosine vanish on the integration interval [0, 2π]. This
leaves even terms only, which is what we would have arrived at starting with the 3rd
representation of the integral above in any case.

ˆ 2π

0

(
1

1− k cos θ

)
dθ =

ˆ 2π

0

(1 + k2 cos2 θ + k4 cos4 θ + k6 cos6 θ + k8 cos8 θ + ...)dθ

Using integral results for the cosine function we have;

ˆ
cosn u du =

1

n
cosn−1 u · sinu+

(n− 1)

n

ˆ
cosn−2 u du,

ˆ 2π

0

cos2 u =
u

2
+

1

4
sin 2u

]2π
0

= π

noting
ˆ 2π

0

cosn u · sinu du = 0,∀n ∈ N

So each time the reduction formula is applied the sin term vanishes. We can build up the
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following ladder,

2πˆ

0

k2 cos2 θ dθ = (2π)
1

2
k2

2πˆ

0

k4 cos4 θ dθ = (2π)
3 · 1
4 · 2

k4

2πˆ

0

k6 cos6 θ dθ = (2π)
5 · 3 · 1
6 · 4 · 2

k6

2πˆ

0

k8 cos8 θ dθ = (2π)
7 · 5 · 3 · 1
8 · 6 · 4 · 2

k8

2πˆ

0

k10 cos10 θ dθ = (2π)
9 · 7 · 5 · 3 · 1
10 · 8 · 6 · 4 · 2

k10

Going back to our original problem we can write
ffi
C

B⃗ ◦ dr̄ =

(
µ0I

2π

){
π +

1

2

(
r2 − y20
r2 + y20

)(
2π + 2π(

1

2
k2 +

3 · 1
4 · 2

k4 +
5 · 3 · 1
6 · 4 · 2

k6 + ...)

)}
with k = 2y0r

r2+y2
0
, which is strictly a positive number in the way we have set up the prob-

lem. The series that resulted from the cosine integration can be put in the form of a
hypergeometric series. Let’s consider the series of,

1
Term 0

+
1

2
k2

Term 1

+
3 · 1
4 · 2

k4

Term 2

+
5 · 3 · 1
6 · 4 · 2

k6

Term 3

+
7 · 5 · 3 · 1
8 · 6 · 4 · 2

k8

Term 4

which has the from c0 + c1k
2 + c2k

4 + c3k
6 + c4k

8 + ..., c0 = 1

where
cn+1

cn
=

(2n+ 1)

(2n+ 2)
k2 =

(n+ 1
2 )

(n+ 1)
k2

Therefore we can write

(
1

2
k2 +

3 · 1
4 · 2

k4 +
5 · 3 · 1
6 · 4 · 2

k6 + ...) = 1F0(
1

2
; k2)− 1

ffi
C

B⃗ ◦ dr̄ =

(
µ0I

2π

){
π +

1

2

(
r2 − y20
r2 + y20

)(
2π + 2π( 1F0(

1

2
; k2)− 1)

)}

You probably don’t recognize the taylor series of the above hypergeometric function, it’s
simply

1F0(
1

2
; k2) =

1√
1− k2

Noting that k was strictly positive and 0 ≤ k < 1 so we are only dealing with the positive
square root.

√
1− k2 =

√
(r2 − y20)

2

(r2 + y20)
> 0

=
(r2 − y20)

(r2 + y20)
, r > y0

=
(y20 − r2)

(r2 + y20)
, y0 > r

Collecting all the results
ffi
C

B⃗ ◦ dr̄ =

(
µ0I

2π

){
π + π

(
r2 − y20
r2 + y20

)(
r2 + y20
r2 − y20

)}
, r > y0

= µ0I

or when the loop does not contain the wireffi
C

B⃗ ◦ dr̄ =

(
µ0I

2π

){
π − π

(
r2 − y20
r2 + y20

)(
r2 + y20
r2 − y20

)}
, y0 > r

= 0

Perhaps you are wondering what other shapes can be integrated by hand, well I can tell
you if the circular loop is inclined to the yz plane so that it projects an an ellipse onto
the yz plane then the integral is extremely difficult and is of the form

a+ b cos θ

c+ d cos θ + e cos2 θ

so already with just a minor change to the amperian loop the integral probably will have
you heading to a computer algebra system.
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